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In this paper the non-linear modal interaction is examined betwen liquid hydrodynamic
impact and an elastic support structure. The liquid impact is modelled based on a
phenomenological concept by introducing a power non-linearity with a higher exponent.
A special saw-tooth time transformation (STTT) technique is used analytically to describe
the in-phase and out-of-phase strongly non-linear periodic regimes. Based on explicit forms
of analytical solutions, all basic characteristics of the non-linear free and forced response
regimes, such as the time history, the amplitude–frequency dependence and the non-linear
parametric resonance curves, are estimated. The response behavior reveals that a high
frequency out-of-phase non-linear mode takes place with a relatively small tank amplitude,
and is more stable than the in-phase oscillation mode under small perturbations. The
in-phase mode has relatively large tank amplitudes and does not preserve its symmetry
under periodic parametric excitation.
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1. INTRODUCTION

Liquid containers constitute major components in a number of dynamical systems, such
as aerospace vehicles, road tankers and liquefied natural gas carriers. Liquid sloshing in
a moving container creates a broad class of problems of practical safety, including tank
trucks on highways, liquid tank cars on railroads and liquid cargo in ocean-going vessels.
Gasoline and other flammable liquid tankers are prone to rollover accidents when entering
and exiting highways.

Analytical techniques for predicting large amplitude sloshing are not fully developed.
Such loads are extremely important in designing the support structure and internal
components of a vehicle’s tank. In addition, much of the sloshing technology developed
for space applications [1] is not applicable to road tankers, because emphasis has been
placed on frequencies and total forces as they relate to control system requirements and,
therefore, the effects of local peak impact pressure on structural requirements have not
been studied to any extent. Furthermore, the excitation amplitudes considered in space
applications are too small for road vehicle simulation.

The study of liquid sloshing dynamics within a moving vehicle involves different types
of modelling and analysis. Gustafson and Gustafson [2] presented an extensive survey
pertaining to the overturning problem of heavy vehicles. Isermann [3] computed the
overturning limit for some tank semi-trailers during steady state cornering. Bauer [4]
provided an analytical treatment for different container geometries partially filled with
liquid. The analysis includes estimates for liquid natural frequencies, forces and moments.
Slibar and Troger [5, 6] analyzed the lateral wheel load transfer ratio of a tractor
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semi-trailer system. The forces and moments from the liquid load for harmonic oscillation
steering were introduced via a mechanical model approach. Each compartment includes
one rigid and one moving mass. The moving masses are restrained by linear springs and
dashpots. It is speculated that liquid-carrying vehicles have more accidents than other
vehicles, in part because of the large movement of the liquid cargo, with its attendant forces
and moments. Liquid sloshing during a highway maneuver can lead to lateral and roll
instabilities, decreased controllability/maneuverability, and increased stress on tank
structures. The influence of large amplitude liquid sloshing on the overturning and
skidding stability of road tankers is very serious during dynamic maneuvers. Strandberg
[7] conducted experimental investigations to measure liquid sloshing forces in laterally
oscillating model tanks, with or without baffles and cross-walls. The effects of liquid forces
on overturning and skidding tendencies were evaluated from simplified vehicle models (no
roll, no yaw) in a hybrid computer.

The problem of liquid sloshing involves the estimation of hydrodynamic pressure
distribution forces and moments. These hydrodynamic forces may have a strong
influence on the dynamics of the elastic structure carrying liquid containers. The
non-linear interaction of liquid sloshing with the dynamics of the elastic supporting
structure subjected to vertical sinusoidal ground motion was examined in the
neighborhood of internal resonance by Ibrahim and Barr [8, 9], Ibrahim [10] and
Ibrahim et al. [11]. In the neighborhood of internal resonance conditions the system
experienced complex response characteristics such as jump phenomena, multiple
solutions and energy exchange. Non-stationary responses with cases including violent
system motion, which can lead to the collapse of the system, were observed
experimentally in the neighborhood of multiple internal resonances. Liquid–structure
interaction under horizontal periodic motion was studied by Ibrahim and Li [12]. More
realistic cases, such as simultaneous random horizontal and vertical ground excitations,
were examined by Soundararajan and Ibrahim [13] using the theory of weakly
non-linear differential equations.

Sloshing phenomena are governed by liquid fill depths. For the case of low fill depth,
the liquid free surface motion is characterized by the formation of hydraulic jumps and
traveling waves for excitation periods around resonance. At higher fill depths, large
standing waves are usually formed in the resonant frequency range. When hydraulic jumps
or traveling waves are present, extremely high impact pressures can occur on the tank
walls. Typical pressure traces recorded under this sloshing condition were reported by Cox
et al. [14]. Impact pressures can also occur on the tank top when tanks are filled to the
higher fill depth, and the pressure variation is neither harmonic nor periodic, since the
magnitude and duration of the pressure peaks vary from cycle to cycle even though the
tank is experiencing harmonic oscillation.

It is clear that liquid pressure impacts are one of the sources of non-linearity in a liquid
tank supported on an elastic structure. The addition of the impact to a harmonic oscillator
immediately results in a strongly non-linear system. This is in contrast to most non-linear
systems that have been studied, in which the non-linearity is assumed to be small and
quasi-linear perturbation techniques can be applied. In this case the dynamicist should
utilize the techniques developed for the theory of vibro-impact of rigid body systems
[15–21]. In this paper, the problem of the fluid hydrodynamic sloshing impact with the
supported structure will be examined using the technique of saw-tooth time
transformations (STTT). Note that a transformation of co-ordinates by means of
non-smooth functions which allows us to eliminate impact constraints was introduced by
Zhuravlev [22]. This transformation deals with the system co-ordinates and can be directly
applied for cases of absolutely rigid constrains.
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In the present paper, the hydro-impact phenomenon will be modelled using a
phenomenological power non-linearity with high exponent. As a result, the model does not
include absolute rigid constrains and thus will be considered using the STTT technique.
The physical and mathematical principals of the STTT have been formulated by Pilipchuk
[23–25] and are documented in a research monograph by Vakakis et al. [26]. This technique
is based on a special transformation of time and gives explicit form analytical solutions
for the power non-linearities which are considered in the present work. To the authors’
knowledge, this is the first attempt to model the liquid sloshing pressure impact by a
strongly non-linear system, the parameters of which can be obtained by experimental
measurements. This task is currently being considered by the authors.

2. LIQUID SLOSHING MODELING

Generally, the liquid hydrodynamic pressure in moving rigid containers is comprised of
two distinct components. One component is directly proportional to the acceleration of
the tank. This component is caused by part of the fluid moving in unison with the tank.
The second component is known as ‘‘convective’’ pressure and experiences sloshing at the
free surface. Accordingly, three dynamic regimes are possible, as demonstrated in Figure 1:

(1) Small oscillations in which the fluid free surface remains planar without rotation (see
Figure 1(a)). This regime can be described by a linear equation for the first asymmetric
sloshing mode which is equivalent to a pendulum describing small oscillations such that
sin u2 u.

(2) Relatively large amplitude oscillations in which the liquid free surface experiences
both non-planar and rotational motions (see Figure 1(b)). This regime is described by a
differential equation with weak non-linearity and can be analyzed using the standard

Figure 1. Regimes of liquid free surface motion and their modelling: (a) linear modelling, describing planar
motion, l= b, sin u1 u; (b) weakly non-linear modelling, describing non-planar motion, lE b, sin u1 u− u3/3!;
(c) hydrodynamic impact pressure, lq b.
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Figure 2. A schematic diagram of the model.

perturbation techniques. The equivalent mechanical model is the simple pendulum such
that sin u2 u− u3/3!.

(3) Strongly non-linear motion, where the non-linearity is mainly due to rapid velocity
changes associated with hydrodynamic pressure impacts of the liquid portion close the the
free surface (see Figure 1(c)). The velocity changes of the liquid free surface are usually
treated as being instantaneous (velocity jumps) and they lead to various strongly non-linear
features of the system behavior. This regime can be modelled by a pendulum describing
impacts with the tank walls. This is the case of the present work.

The mathematical modelling of liquid containers supported on elastic structures can be
developed by considering a liquid container supported by four massless rods of length L,
which are restrained by four torsional springs k at the base as shown in Figure 2. Let M
be the total mass of the container including liquid, and m be the equivalent sloshing mass
of the first asymmetric mode of the liquid. The fluid free surface is modelled as a pendulum
of length l. The pendulum can reach the walls of the tank if its angle with the vertical axis
is u=2u0. Considering the pendulum and the tank walls as rigid bodies, one must
introduce the constraint that =u =E u0. This type of modelling is similar to the one used
by Shaw and Shaw [27], who represented the impact by the momentum equation together
with the definition of the coefficient of restitution. They also assumed the collision between
the pendulum mass and the tank wall as a discontinuous process. From the point of view
of analytical techniques in non-linear mechanics, such constraints essentially complicate
the analysis, because one must match solutions at points of interaction {t :u(t)=2u0},
which are a priori unknown. Hence there is a reason to avoid operations with constraints.
As mentioned in the introduction, a sufficiently simple non-smooth transformation of
co-ordinates leading to the exclusion of constraints was proposed in reference [22].
However, the simplest method does not introduce the constraints at all. Indeed, one can
phenomenologically describe the interaction between the pendulum and the tank walls with
a special potential field of interaction, which is very weak in the region =u =Q u0, but
becomes fast growing in the neighborhood of the points u=2u0. For example, the
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desirable properties of the potential field can be provided by means of the following
function of the potential energy,

Pi (u)=
bu0

2n 0u

u01
2n

, (1)

where n�1 is a positive integer, and b is a positive constant parameter. The force of
interaction is

Fi =
dPi (u)

du
= b0u

u01
2n−1

, (2)

which is demonstrated in Figure 3 for different values of n. One has a limit of absolutely
rigid bodies interaction, if n:a. For this case the potential energy (1) takes the square
well form. If the exponent 2n−1 is large and finite, then the interaction field is not
absolutely localized at the points u=2u0. This means that the tank walls and the
pendulum mass are not absolutely rigid, but admit a small deformation about the points
of contact u=2u0. Because of this, a finite value of n seems more realistic than the rigid
body limit; yet the approach considered includes the rigid body limit as a particular case.

Suppose that the energy dissipation of the pendulum basically results from the pendulum
interaction with the container walls. This means that the dissipation is spatially localized
around the points u=2u0. The localized dissipative force will be approximated by the

Figure 3. The force of impact between the tank and the pendulum for different exponents of the power function
of x1 = u/u0.
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expression

Fd = d0u

u01
2p

u� , (3)

where d is a constant coefficient, p�1 is a positive integer (generally, p$ n), and a dot
denotes differentiation with respect to time t.

This impact representation was described by means of power functions by Hunt and
Grossley [28]. They used local co-ordinates about the point of interaction, and thus the
exponents of the power functions are not large numbers compared with 1. The
representation (2) for impact interactions was also used in reference [29].

With reference to Figure 2, the Cartesian co-ordinates of the pendulum and the
container mass centers are xp =L sin 8+ l sin u, yp =L cos 8− l cos u+H and
xc =L sin 8, yc =L cos 8, respectively. The potential energy of the system can be written
as

P=
k82

2
+ (M−m)+ gyc +mgyp +

bu0

2n 0u

u01
2n

+constant

=
k82

2
+ (M−m)gL cos 8+mg(L cos 8− l cos u)+

bu0

2n 0u

u01
2n

+constant, (4)

where the constant is an additive constant that will have no influence on the equation of
motion.

The kinetic energy is

T=
m
2

(ẋ2
p + ẏ2

p )+
M−m

2
(ẋ2

c + ẏ2
c )

=
M−m

2
L28̇2 +

m
2

[L28̇2 +2lL cos (8+ u)8̇u� + l2u� 2]. (5)

Introducing the linear law of dissipation for the container and taking the non-linear
dissipation (3) for the pendulum, the elementary work done by the dissipative force can
be written as

dWd =−c8̇ d8− d0u

u01
2p

u� du,

where the minus sign means that the energy is taken out from the system, and c is a linear
viscous damping coefficient.

Let Fx (t) and Fy (t) be the components of an external force per unit mass along the x-
and y-axes respectively. Elementary work done by the external force is

dWe =m[Fx (t) dxp +Fy (t) dyp ]+ (M−m)[Fx (t) dxc +Fy (t) dyc ]

=ML[Fx (t) cos 8−Fy (t) sin 8] d8+ml[Fx (t) cos u+Fy (t) sin u] du.
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The Lagrangian equations of motion are

d
dt

1L
1u�

=
1L
1u

=
1Wd

1u
+

1We

1u
,

d
dt

1L
18̇

−
1L
18

=
1Wd

18
+

1We

18
, (6, 7)

where L=T−P is the Lagrangian function.
Applying equations (6) and (7) with respect to the angle co-ordinates u and 8, the

following equations of motion are obtained:

l2mu� + lLm cos (u+8)8̈ − lLm sin (u+8)8̇2 + lm[g−Fy (t)] sin u

+ d0u

u01
2p

u� + b0u

u01
2n−1

= lmFx (t) cos u, (8)

lLm cos (u+8)u� +L2M8̈− lLm sin (u+8)u� 2 + c8̇ + k8−LM[g−Fy (t)] sin 8

=LMFx (t) cos 8. (9)

These equations include geometrical non-linearities (inertia and stiffness) and impact
non-linearities due to the phenomenological expressions (2) and (3). The stiffness
geometrical non-linearities are expressed by the trigonometrical functions. For a small
magnitude of the angle u0, i.e., u0 = o�p/2, the impact will be observed in a small region
of the angle co-ordinate, where u0 o. In this region the relationships sin u= u+O(o3) and
cos u=1+O(o2) hold. Thus the geometrical non-linear terms are of orders O(o2) and
O(o3), and at the same time the ‘‘impact’’ non-linearity is (u/u0)2n−1 =O(1). If higher order
terms are retained, then the resulting geometrical non-linearities may cause the occurrence
of internal resonance. The influence of internal resonance in the presence of impact
nonlineary will be treated in a separate study.

It follows that one can keep the ‘‘impact’’ non-linear terms but linearize the rest of the
terms in equations (8) and (9). As a result, one obtains

l2mu� + lLm8̈+ lm[g−Fy (t)]u+ d0u

u01
2p

u� + b0u

u01
2n−1

− lmFx (t), (10)

lLmu� +L2M8̈ −LM[g−Fy (t)]8+ c8̇ + k8=LMFx (t). (11)

Let us measure the angles and time in a scale of the free pendulum oscillations with
amplitude u0 (when the tank is stationary) by introducing the following dimensionless
variables:

x1 = u/u0, x2 =8/u0, t�=Xg
l
t, m=m/M, l= l/L, (12)

2d1 =
d

LmgXg
l
, 2d2 =

c
LmgXg

l
, b=

b
Lmgu0

,

fx (t�)=
Fx (t)
gu0

, fy (t�)=
Fy (t)

g
, n=

vL

vl
=Xl0 k

MLg
−11,

v2
L =

k−LMg
ML2 , v2

l =
g
l
. (13)

The last parameter n is impotent for future analysis and denotes the ratio of two local
frequencies; i.e. vL is frequency of the tank in the absence of the pendulum motion, and
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vl is the frequency of the pendulum if the tank is standstill. The frequency vl is equivalent
to the fluid first antisymmetric sloshing mode and depends on the tank geometry and fluid
depth (see reference [1] for closed form expressions of liquid natural frequencies for
different tank geometries).

Taking into account the notations listed in equations (12) and (13) gives the following
dimensionless equations of motion in the matrix form:

B
d2x
dt�2 +2D(x)

dx
dt�+[K+P(t�)]x+ bN(x)=Q(t�), (14)

where x=(x1 x2)T and

B=0l1 1
1/(lm)1, D(x)=0d1x2p

1

0
0
d21, K=0l0 0

n2/(lm)1,

P(t�)= fy (t�)0−l

0
0

1/m1, Q(t�)= fx (t�)0 l

1/m1, N(x)=0x2n−1
1

0 1 (15)

The non-linear system (14) will be studied analytically (for periodic regimes) by means of
a special transformation of the equations of motion, and the results will be tested
numerically. Note that to obtain a correct analytical solution for the impact regimes one
must keep the strongly non-linear term bN(x), starting from the first step of the analysis.
In other words, no linear generating system for the impact regimes can be admitted.

3. ANALYTICAL STUDY

3.1.   

The linear analysis is not the main purpose of the present work; however, as a
preliminary step the linear natural frequencies of the model should be determined. These
frequencies will be used for future treatment of non-linear results. The frequencies are
given by considering the linear undamped system

B
d2x
dt�2 +Kx=0. (16)

To determine the normal mode regime we assume the solution

x=H cos vt�, H=0h1

h21. (17)

Substituting equation (17) into (16) gives a homogeneous set of algebraic equations for
the amplitude,

(K−v2B)H=0, (18)

and the frequency equation,

det (K−v2B)=0c v4 −
1+ n2

1− m
v2 +

n2

1− m
=0. (19)
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Figure 4. The dependence of the linear natural frequencies of the model on the partial frequency ratio
n=vL/vl for model parameters b=1, l=0·5 and m=0·5.

The roots of equation (19) are

v2
1 =

1+ n2 +z(1− n2)2 +4mn2

2(1− m)
, h2 =

lmv2
1

n2 −v2
1
h1, in-phase mode, (20)

v2
2 =

1+ n2 +z(1− n2)2 +4mn2

2(1− m)
, h2 =

lmv2
2

n2 −v2
2
h1, out-of-phase mode. (21)

The dependence of the linear modal frequencies on the local frequency ratio n=vL /vl for
fixed mass ratio parameter m=0·5 is illustrated in Figure 4. Careful inspection, together
with Figure 4, shows that the following relationship holds:

v1 Q nQv2. (22)

This relationship will be used later.
It is known that the normal modes of any linear system are orthogonal with respect to

the matrix B:

HT
1 BH2 =0, (23)

where Hi is the eigenvector corresponding to the ith natural frequency vi .

3.2. -  

Consider the free undamped oscillation of the non-linear system:

B
d2x
dt�2 +Kx+ bN(x)=0. (24)

If the non-linear terms appearing in the equations of motion are small compared with the
linear terms, then the straight lines in the amplitudes plane h1h2 predicted by linear theory,
equations (20) and (21) will be slightly deformed.

To consider the strongly non-linear situation which results by including the power terms
with a higher exponent, the STTT technique will be applied. The idea of STTT is similar
to a great extent to the trigonometric generating functions {sin j, cos j} frequently used
in constructing solutions of linear and weakly non-linear systems. Similarly, one can
consider a pair of non-smooth functions which have relatively simple forms and will be
termed as the saw-tooth sine, t(j), and the rectangular cosine, e(j), which is the generalized
derivative of t(j), as shown in Figure 5. The functions {t(j), e(j} and {sin j, cos j}
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describe the motions of the two simplest vibrating models; namely, the motion of a particle
between two rigid barriers and a mass–spring oscillator, respectively.

We seek a family of periodic solutions of equations (24) in the form

x=X(t), t= t(t�/a), (25)

where a is an unknown scaling factor which is equal to one-quarter of the period T=4a
and must be defined for the autonomous case.

Thus the solution will be constructed as a function of the saw-tooth function t, which
varies in the region −1E tE 1. Note that equation (24) admits a group of
transformations x:−x. As a result, the solution can be constructed as an odd function:
X(−t)0−X(t).

When substituting equation (25) into equation (24), one should take into account the
following differentiation scheme of the expression (25). Due to the equality e2(t�/a)=1, one
can write

dx
dt�=

1
a

dX
dt

e,
d2x
dt�2 =

1
a2

d2X
dt2 +

1
a2

dX
dt

de(t�/a)
d(t�/a)

. (26)

The last term in equation (26) contains the series of Dirac delta functions

de(t�/a)
d(t�/a)

=2 s
j=a

j=−a $d0t�
a

+1−4j1− d0t�
a

−1−4j1%. (27)

Now that the delta functions (27) are ‘‘localized’’ at points {t�:t(t�/a)=21}. This means
that under the condition

dX/dt=0 for t=21, (28)

all delta functions of the series will be eliminated, and as a result the second derivative
in equation (26) becomes a continuous function.

Substituting equation (26) into the equations of motion (24), one obtains the boundary

Figure 5. Saw-tooth sine and rectangular cosine.
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value problem

B
d2X
dt2 =−a2[KX+ bN(X)], (29)

dX
dt bt=1

=0, X(−t)0 −X(t). (30)

Note that the left side of equation (29) does not include the linear stiffness term, and by
setting the right side to zero, the left side does not represent a harmonic oscillator as in
the case of quasi-linear treatment. This means that any generating solution for equation
(29) should be based on the solution of B(d2X/dt2)=0. However, by setting the right side
to zero, the qualitative structure of the periodic motion of the system will be preserved.
Note that this property will be destroyed if the same argument is applied to the system
equations of motion before performing STTT. The transformed generating equation
B(d2X/dt2)=0 possesses a solution of the form X(t)=X(0)+X'(0)t, which is a periodic
function of t�. Now we seek a solution of the non-linear boundary value problem (29) and
(30) in form of a series of successive approximations:

X=X0(t)+ oX1(t)+ o2X2(t)+ . . . , a2 = oh0(1+ og1 + o2g2 + . . . ), (31)

where the formal parameter o=1 is introduced as a book-keeping to identify terms of
different orders in the expansion. Note that all terms of the first series are two-component
column matrices: Xi (t)= (Xi1(t) Xi2(t))T, i=0, 1, 2, . . . ; these functions and the constants
h0, g1, g2, . . . will be defined by an iterative process.

Substituting equations (31) into equation (29) and considering terms of different orders
of o, one obtains the sequence of differential equations

B
d2X0

dt2 =0, B
d2X1

dt2 =−h0[KX0 + bN(X0)],

B
d2X2

dt2 =−h0{g1[KX0 + bN(X0)]+ [K+ bN'x (X0)]X1}, (32)

and so on, where N'x (X) denotes the 2×2 matrix of the first partial derivatives of the
column N(X) elements with respect to the components of vector X. Higher order equations
can also be generated; however, terms involved in the expression of N(X) are obtained
using Taylor’s expansion with respect to o.

The boundary conditions (30) will be satisfied starting from the second step of the
iterative process; i.e., the sequence of boundary conditions for equations (32) is taking the
form (o=1)

0dX0

dt
+

dX1

dt 1bt=1

=0,
dX2

dt bt=1

=0, . . . . (33)

The first equality in equation (33) implies that the derivatives dX0/dt and dX1/dt at the
point t=1 are assumed to be of the same order, although the functions X0 and X1 are
of differing orders of magnitude, as the series (31) indicates. Note that if each of the
derivatives dX0/dt and dX1/dt is separately set to zero at the point t=1, then one can
only obtain the trivial solution X0 0.

Having no boundary conditions at the first step of the process, one obtains the following
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generating solution:

X0 =A0t, A0 = (A01 A02)T = constant. (34)

This solution describes a vibro-impact oscillator with two rigid barriers where the length
of the arbitrary vector A0 is equal to the barrier spacing. The direction of the vector will
be defined in the next approximation.

Substituting equation (34) into the second differential equation of the sequence (32) and
integrating with respect to t gives

X1 =A1t+K1,3t
3 +K1,2n+1t

2n+1, (35)

where A1 is an arbitrary constant vector:

K1,3 =−
h0

6
B−1KA0, K1,2n+1 =−

h0b

2n(2n+1)
B−1N(A0).

The inverse matrix B−1 exists if the following condition holds:

det B=1/(lm)−1$ 0.

In terms of the original system parameters, this condition implies that ml$ML. Note that
the first term in equation (35) has the same structure as the generating solution (34), and
thus, there is no need to keep this term in equation (35). Accordingly, one should set
A1 =0. Combining two members of the expansion, X0 and X1, and satisfying the first
boundary condition in equation (33), one obtains the non-linear eigenvector problem
relating to the vector A0:

0K−
2
h0

B1A0 +
b

n
N(A0)=0. (36)

When the impact parameter b=0, the problem (36) is reduced to a linear eigenvector
problem of the type (18), and a comparison with equation (19) shows that the value 2/h0

coincides with the square of the linear normal mode natural frequency (v2
1 or v2

2 ). In the
linear case the natural frequencies do not depend on the eigenvector A0. If the non-linearity
exists, a relationship between the frequency and the amplitude vector is established by
multiplying equation (36) by the transpose of the vector A0. This relationship is given by
the expression

2
h0

=
AT

0KA0

AT
0 BA0

+
b

n
AT

0 N(A0)
AT

0 BA0
. (37)

Problem (36) will be considered later.
Now let us consider the next step of the iteration process. Substituting equations (34)

and (35) into the third equation of equation (32) and integrating gives

X2 =A2t+ g1X1 +K2,5t
5 +K2,2n+3t

2n+3 +K2,4n+1t
4n+1, (38)
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where A2 is an arbitrary constant vector, and

K2,5 =−
h0

20
B−1KK1,3,

K2,2n+3 =−
h0

(2n+2)(2n+3)
B−1[bN'x (A0)K1,3 +KK1,2n+1],

K2,4n+1 =−
bh0

4n(4n+1)
B−1N'x (A0).

Solution (38) contains an arbitrary vector A2 and an arbitrary scalar g1. The arbitrary
vector A2 cannot be set to zero as in the case of the X1 solution, because the boundary
condition (33) will result in two equations for one unknown g1. In this case one has to
determine A2 and g1. First, the boundary condition (33) for X2 gives

A2 = g1A0 −5K2,5 − (2n+3)K2,2n+3 − (4n+1)K2,4n+1. (39)

However, this matrix equation contains three unknowns in two equations, and one
should adopt another condition to determine these unknowns. The initial velocity vector
ẋ(0) should preserve its projection on A0 with respect to the inertia matrix B on each of
steps of the iterative process; i.e.,

AT
0 Bẋ(0)=

1
a

AT
0 B(A0 +A1 +A2)=

1
a

AT
0 BA0.

This leads to the condition of the B-orthogonality of the vector A2 with respect to A0; i.e.,

AT
0 BA2 =0. (40)

The geometrical meaning of condition (40) is that a component of the solution, which is
proportional to the saw-tooth time mode t, preserves its B-orthogonal projection on the
generating solution A0t on the second step of the iteration process. Basically, this is a
normalization condition.

Substituting equation (39) into equation (40) the parameter g1 is determined by the
expression

g1 =5
AT

0 BK2,5

AT
0 BA0

+ (2n+3)
AT

0 BK2,2n+3

AT
0 BA0

+ (4n+1)
AT

0 BK2,4n+1

AT
0 BA0

. (41)

Thus, the second approximation is completed. Similar calculations can be performed to
compute higher order approximations.

To illustrate the solution structure in more detail, the approximate solution in terms of
its component is written

x1 =A01t−
h0(lA01 − n2A02)

l(1− m)
t3

6
−

bh0A2n−1
01

l(1− m)
t2n+1

2n(2n+1)
+ . . . , (42)

x2 =A02t+
h0(lmA01 − n2A02)

(1− m)
t3

6
+

mbh0A2n−1
01

(1− m)
t2n+1

2n(2n+1)
+ . . . , (43)
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where t= t(t�/a), a2 = h0(1+ g1 + . . .), and

g1 =$− b2h2
0 (1−2n)A4n−2

01

8l(1− m)n2(1+2n)
+

bh2
0 (3−4n+4n2)(lA01 − n2A02)A2n−1

01

12l(1− m)n(1+2n)

+
h2

0 (l2mA2
01 −2lmn2A01A02 + n4A2

02)
24l(1− m)m %>02A01A02 + lA2

01 +
A2

02

lm1. (44)

To complete the solution, one must obtain the components of the vector A0 = (A01 A02)T

by solving the non-linear eigenvector problem (36) (the solution is given in the next
subsection). In the linear case (b=0) the vector amplitude remains indefinite, although
its direction is preserved. If the non-linearity exists (b$ 0) then, as follows from equation
(37), the vector length depends on the parameter h0. Thus, the solution given by equations
(42)–(44) includes one constant parameter h0. Since the equation of motion (24) admits
a group of time shift t�:t�+ a, another arbitrary parameter a can always be introduced
into the solution. Finally, the solution will contain two parameters h0 (or the length of
eigenvector can be chosen), and phase a. Using these parameters, one can satisfy a definite
type of initial conditions which provide the existence of the periodic regimes.

3.3.  -  

Consider the non-linear eigenvalue problem (36), which can be written in terms of the
vector components using the notations (15):

l(1−V2
0 )A01 −V2

0A02 +
b

n
A2n−1

01 =0, (45)

V2
0A01 −

1
lm

(n2 −V2
0 )A02 =0, (46)

where V2
0 =2/h0.

Equation (46) gives

A02 = lm
V2

0

n2 −V2
0
A01. (47)

Substituting equation (47) into equation (45) and using equations (19)–(21), one obtains

bA2n−2
01 = nl(1− m)

(V2
0 −v2

1 )(V2
0 −v2

2 )
V2

0 − n2 . (48)

If b=0 one has the linear case, and equation (48) should be considered as an equation
for linear frequencies with respect to V0. In the non-linear case (b$ 0) equation (48) defines
an amplitude A01 as a function of V0. Having this function, one can find another amplitude
A02 by means of the expression (47). Assuming that the mass ratio parameter m to be less
than 1, and taking into account equation (22), i.e., v1 Q nQv2, one obtains the following
condition for equation (48):

v1 QV0 Q n or v2 QV0. (49)

Taking V0 as a variable parameter, one can say that expressions (47) and (48) define two
curves on the plane A01A02 (indicated by solid curves in Figures 6(a, b):

A01 =A01(V0), A02 =A02(V0) (v1 QV0 Q n); (50)

A01 =A01(V0), A02 =A02(V0) (v2 QV0). (51)
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Figure 6. Linear and non-linear eigenvectors for system parameters b=1, l=0·5, m=0·5, n=1. (a) n=2;
(b) n=6. — —, Linear normal modes; ——, non-linear normal modes.

Each point of these curves represents approximate values of amplitudes for strongly
non-linear out-of-phase (50) and in-phase (51) periodic regimes. If the parameter V0 is close
to one of the linear natural frequencies v1 or v2, then the curves (50) or (51) go close to
a straight line of one of the linear normal modes (20) or (21). Figure 6(a) is obtained for
the case n=2, while Figure 6(b) is for n=6. For a given point (A01, A02) belonging to
one curve the amplitudes of the pendulum and the tank (x̂1, x̂2) can be obtained by using
expressions (42) and (43), for t=1. The estimated amplitudes for the out-of-phase and
in-phase motions are shown in Figure 7. For the out-of-phase mode the relationship is
represented by an almost straight line for both small and large amplitudes. In the case of
a strongly non-linear regime, when the pendulum amplitude is x̂1 1 1, the tank amplitude

Figure 7. The tank and pendulum amplitude relationships of non-linear in-phase and anti-phase periodic free
oscillation regimes, for model parameters n=6, b=1, l=0·5, m=0·5 and n=0·5.
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Figure 8. One period time history records of in-phase mode for model parameters n=6, b=1, l=0·5,
m=0·5 and n=0·5. — —, Numerical solution; ——, analytical solution. (a) V2

0−v2
1 =0·001; (b)

V2
0 −v2

1 =0·005.

is relatively small, at x̂2 1 0·2. Another situation is observed for the in-phase mode, when
both the pendulum and the tank simultaneously move in the same direction. The tank
amplitude is large enough compared to the pendulum, and the curve slope is not constant
in the non-linear region (Figure 7, top curve). Numerical simulations also show that due
to impact non-linearity the in-phase periodic regime is not stable with respect to small
perturbations of the out-of-phase mode, and as a result the analytical and numerical
solutions for the strongly non-linear in-phase regime (Figure 8(b)) are not as good as for
the out-of-phase one (Figures 9(a) and (b)). In Figures 8(a) and 8(b) is shown a comparison
between the numerical estimation (shown by dashed curves) and the analytical result
(shown by solid curves in the time domain for two values of the nearness of the non-linear
natural frequency to the linear natural frequency; i.e., for V2

0 −v2
1 =0·001 and 0·005 and

for n=6). Figure 8 is taken for the in-phase mode and shows that, for a large difference
between the non-linear natural frequency and the linear one, the matching between
numerical and analytical solutions is relatively poor. On the other hand, Figure 9 is
obtained for the out-of-phase mode and reveals good agreement between the numerical
and analytical solutions.

3.4.  

Consider equation (14), under purely parametric excitation P(t�) of period T=2a. This
means that the external force contains only a vertical periodic component fy (t�) of the period
T=2a, and Q(t�)0 0. Therefore, we assume that the excitation period is equal to one half
of the period of solution. Suppose that a time symmetry of function fy (t�) allows us to
introduce a new argument t as fy (t�)0 fy (at(t�/a)). For example, it can be verified that

fy (t�)= p0 cos (pt�/a)0 p0 cos pt. (52)
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Taking this remark into account, one finally obtains, instead of equation (29), the
transformed equation

B
d2X
dt2 =−a2[KX+P(t)X+ bN(X)] (53)

and the boundary conditions

dX
dt bt=1

=0, X(−t)0−X(t), (54)

where

P(t)= fy (at(t�/a))0−l

0
0

1/m1.

To solve the boundary value problem (53) and (54), one can apply the iterative process
presented in section 3.2. The only difference is that the left side part of the expansion (31)
for a2 is known, and one should additionally consider the parametric excitation term
P(t)X.

For example, the expression (35) will take the form

X1 =K1,3t
3 +K1,2n+1t

2n+1 − h0 g
t

0

(t− z)B−1P(z)A0z dz. (55)

Figure 9. One period time history records of anti-phase mode for model parameters n=6, b=1, l=0·5,
m=0·5 and n=0·5. — —, Numerical solution; ——, analytical solution. (a) V2

0−v2
2 =0·02; (b) V2

0 −v2
2 =30.
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Figure 10. Parametric resonance curves for in-phase and anti-phase modes for model parameters b=1, l=1,
m=0·5, n=0·5, p0 =1·07. (a) n=2; (b) n=6.

Recall that, in the present formulation, we seek an odd solution with respect to t, so
that the integral term in equation (63) must be odd. This will lead to a restriction for the
parametric force considered; namely, the function P(t) must be even. Note that this
restriction can be relaxed in a more general formulation.

The non-linear eigenvector problem relating the vector A0 is written as

0K+2 g
1

0

P(z)z dz−V2
0B1A0 +

b

n
N(A0)=0, (56)

where V2
0 =2/h0.

Consider the non-linear eigenvector problem (56), which can be written in terms of its
components as

l(1−V2
0 − p)A01 −V2

0A02 +
b

n
A2n−1

01 =0, (57)

V2
0A01 −

1
lm

(n2 −V2
0 + lp)A02 =0, (58)

where p=2 f1
0 fy (az)z dz.

Equation (58) gives

A02 = lm
V2

0

n2 −V2
0 + lp

A01. (59)
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Substituting equation (59) into equation (57), one obtains

bA2n−2
01 = nl(1− m)

(V2
0 −v2

p1)(V2
0 −v2

p2)
V2

0 − n2 − lp
, (60)

where vp1 and vp2 are the linear resonance frequencies of the system defined by the two
roots

v2
p1,2 =

v2
1 +v2

2

2
−

p
2

1− l

1− m
2$0v2

1 −v2
2

2 1
2

− p
1− l

1− m 0v2
1 +v2

2

2
−

n2 − l

1− l1
+

p2

4
(1+ l)2 −4lm

(1− m)2 %
1/2

.

The parametric excitation linear resonance frequencies are 2vp1 and 2vp2. The
dependence of the vector component A02 on the external parametric excitation frequency
is shown in Figure 10. The excitation has been expressed by relation (52). For this case,
we have p=−4p0/p2. Note that the vector component A02 gives estimate for the tank
amplitude and can be used for qualitative consideration, although more accurate results
can be obtained in a manner similar to the previous subsection.

In Figures 11(a) and 11(b) are shown time history records of the pendulum and tank
motions obtained by numerical integration of equation (53) for a parametric resonance
condition corresponding to the first and second modes, respectively. Initially, the system
is almost at rest (very small initial conditions are used: x1(0)= x2(0)=0; ẋ1(0)=0·01,
(a)ẋ2(0)=0·007, (b) ẋ2(0)=−0·003). If the excitation frequency vf is close to 2vp1 or to
2vp2, then oscillations of large amplitudes appear. Asymmetry of the curves indicates that
the low frequency oscillations involve both in-phase and out-of-phase motions
(Figure 11(a)). On the other hand, the out-of-phase mode is mainly excited about the
higher frequency (Figure 11(b)). This conclusion is confirmed by the configuration plane
representation for trajectories of the solutions shown in Figures 11(c) and (d). The upper
two configuration planes (Figure 11(c)) are obtained for two trajectory periods, tmax =16·5
and 66, when the first mode is parametrically excited, while the lower graphs (Figure 11(d))
are obtained when the second mode is parametrically excited. In both cases, it is seen that
in-phase motion is always transformed to out-of-phase motion.

3.5.   

Consider equation (14) with P(t�)0 0, and let Q(t�) to be a periodic function with period
T=4a. This means that the external force contains only horizontal periodic component
fx (t�) of period T=4a. Suppose that a time symmetry of the function fx (t�) allows one to
introduce a new argument t as fx (t�)0 fx (at(t�/a)). Note that the technique considered does
not require any harmonic analysis of external forces, such as Fourier expansions. Instead,
periodic functions can be approximated by power series with respect to the saw-tooth ‘sine
t’. The first approximation step is expressed by the linear function with respect to t term
(see, for example, the solutions constructed). To illustrate operations with the saw-tooth
approximation for an external force, consider the example

fx (t�)= p0t(t�/a). (61)

It follows from the transformations below that the solution can be easily rewritten for
another kind of external force, which in the present formulation must be an odd function
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Figure 11. Time history response records under parametric excitation of (a) the first mode, i.e., vf =vp1/2,
for model parameters n=6, b=1, l=0·5, m=0·5, n=1, d1 =0·01, d2 =0·01 and p0 =1·07; (b) the second
mode, i.e., vf =vp2/2; and trajectories of the modal amplitudes in the configuration plane for (c) vf =vp1/2 and
(d) vf =vp2/2.
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of t. Taking this remark into account, one finally obtains, instead of equation (29), the
transformed equation

B
d2X
dt2 =−a2[KX+ bN(X)−Q(t)], (62)

where Q(t)= p0t(−l, 1/m)T and the boundary conditions are the same as equations (54).
For this case the first step of the iteration process gives

X1 =K1
3t

3 +K1
2n+1t

2n+1 − h0 g
t

0

(t− z)B−1Q(z) dz. (63)

The boundary conditions lead to the following matrix equation with respect to the constant
vector A0:

(K−V2
0B)A0 +

b

n
N(A0)=2g

1

0

Q(z) dz. (64)

For the example considered, one finally obtains

A02 = lm
V2

0

n2 −V2
0
A01 +

lp0

n2 −V2
0
, (65)

bA2n−1
01 = nl(1− m)

(V2
0 −v2

1 )(V2
0 −v2

2 )
V2

0 − n2 A01 −
nln2

V2
0 − n2 p0. (66)

These two expressions are used in constructing the frequency–amplitude curves of the
pendulum A01 shown in Figures 12(a) and 12(b), where 2/h0 =V2

0 (A01), for a fixed
parameter of the force amplitude p0 and two different exponent of the non-linearity n=2,
and 6, respectively. For the small amplitude region, the curves behave like a typical linear
oscillator with linear natural frequencies. In the non-linear region, i.e., for sufficiently large
A01, the curves essentially depend on the impact power non-linearity n. It is observed that
a large exponent n=6 results in an almost vertical portion of the out-of-phase mode curve
in the region of higher excitation frequency V0 qv2. This means that the pendulum
amplitude in the out-of-phase periodic regime becomes almost fixed, when the excitation
frequency V0 satisfies the condition V0 qv2.

4. CONCLUSIONS

The non-linear interaction of liquid free surface impact motion, the support structure
dynamics has been considered. The impact is modelled based on a phenomenological
representation in the form of a power function with a higher exponent. A special saw-tooth
time transformation (STTT) technique has been applied to analyze the strongly non-linear
periodic regimes of the in-phase and out-of-phase modes. Based on explicit forms of
analytical solutions, all basic non-linear free and forced response characteristics in terms
of time and frequency domains are obtained. The results have shown that a high frequency
out-of-phase non-linear mode appears with a relatively small tank amplitude and preserves
stability with respect to small perturbations of the in-phase oscillation mode. The in-phase
mode is excited by a low frequency forcing function and then may be realized first during
a transient period when the model starts its motion.
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Figure 12. Amplitude–frequency resonance curves under lateral periodic excitation for two powers of
non-linearity: (a) n=2, (b) n=6. Model parameters b=1, l=0·5, m=0·5, n=0·5, and p0 =0·07.
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